
Learning from Different Expert Agents

Joanne Truong* and Joel Ye* and Naoki Yokoyama*

Abstract— While several works on visual navigation have
shown success through using deep reinforcement learning to
train agents modeled with simpler dynamics, training robots
with more complex dynamics proves to be a difficult and open
problem. Here we study how to leverage more easily trained
robots (e.g., a cylindrical robot with a discrete action space)
with simple dynamics models to teach more complex robots
with a different dynamics model (i.e., continuous action space).
Such transfer must overcome the correspondence problem in
differing robot capabilities. We first study demonstrate how
the teacher robot can be leveraged as an onboard expert,
using a heuristic mapping between robot action spaces. Then,
we consider how to learn a mapping which overcomes the
correspondence problem. To this end, we propose an alignment
module which can be jointly learned in the inverse reinforce-
ment learning setting, which addresses dynamics mismatch by
transforming a sequence of teacher states into corresponding
student states.

I. INTRODUCTION

How can we train a robot to navigate around a house? Such
a problem is many layers of realism harder than teaching
a simple agent in a toy grid-world environment. However,
advances in embodied AI have allowed us to tackle several of
these problems: training in photorealistic environments [1],
[2], incorporating realistic sensor noise and deploying such
robots to the real world [3], [4]. One prominent remaining
issue is that these works have assumed a robot with a limited
discrete action space (move-forward 0.25m, pivot ±10◦),
resulting in point-turn dynamics, in which the robot must
come to a full halt to turn. Instead, we propose to lift the
action space to continuous actions, which better exemplifies
the dynamics model of popular mobile robotics platforms
(e.g., LoCoBot [5], TurtleBot [6], Fetch [7], etc.).

However, a continuous action space is considerably harder
to learn [8], and learning this control in addition to the
complex navigation task further complicates learning. To
make learning easier, one potential approach is to transfer the
knowledge learned from a teacher with a simpler morphology
to a student robot with a more complex morphology. In this
work, we study two aspects of this approach. First, if we can
leverage domain knowledge to directly map teacher behavior
to student behavior, how much do student policies benefit?
Second, if we cannot manually connect teacher and student,
how can we learn leverage expert knowledge?

To make learning a policy with a continuous action space
easier, in this work, we investigate how the actions of a
discrete action agent can be used to guide a student agent
that utilizes a continuous action space. We use a behavioral

*All authors contributed equally. Emails: truong.j@gatech.edu
joelye9@gmail.com nyokoyama@gatech.edu

cloning approach that is inspired by DAgger [9], in which
the student learns navigation behavior from the teacher
using supervised learning while also interacting with the
environment.

For the more general case, we cannot directly transfer
robot policies given semantic mismatches between robot
action spaces. To overcome this, Hejna et al. [10] proposes to
learn a hierarchical policy, and directly transfers the teacher’s
high-level policy while aligning the student’s low level policy
to match the teacher’s with an adversarial discriminator.
However, this discriminator assumes that different robots
have comparable transitions in task-relevant states, e.g., the
same movement speed for locomotion. This is an unrealistic
assumption for many cases of robot-to-robot transfer; for
instance, if one robot has a more powerful motor or longer
legs than another, it can span the same distance in a shorter
time frame.

To relax this assumption, we propose to use an alignment
module which is jointly trained with the student policy. The
alignment module is responsible for converting a student’s
sequence of states to a new sequence which more closely
resembles the teacher’s state sequence. With this module, we
enable a student with a vastly different morphology to learn
from the teacher’s demonstrated behavior while not being
constrained to identically replicate the teacher’s pace.

II. RELATED WORK

A. Robot-to-robot transfer

Several other works also involve distilling the knowledge
of an expert policy to a student policy. In the work by Chen
et al. [11], a teacher agent trained with privileged information
is used to label the actions of a student agent as it trained.
The student however, only has access to a subset of the
observations that were available to the teacher. In contrast
to this work, both our teacher and student policies receive
the same set of observations, but have different action spaces.
The approach that we take is most similar to the the work
done by OpenAI for robust manipulation of a Rubik’s Cube
[12], in which a DAgger-like approach is also used to help
initialize new policies that attain levels of performance very
close to the teacher policy, before being fine-tuned with
RL. This is the same pipeline that we adopt for policy
distillation, with a focus on changing the modality of the
action distribution from a discrete space to a continuous
space.

B. Adversarial Alignment

The problem we study is how a student policy πS can
learn from a teacher policy πT despite having different mor-



phologies and action spaces AS , AT . Specifically, we aim to
enable such transfer when the distinct action spaces provide
the robots with very different capabilities. For example, if
AS consists of actions of discrete 1 meter steps, but AT only
contains discrete 0.25 meter steps, we would like the student
to still be able to learn from the teacher’s demonstrations.

A core LfD method for aligning student and teacher
behavior is adversarial alignment, e.g. AIRL from Fu et al.
in [13]. In this approach, a discriminator must distinguish
whether a given state sequence comes from πS or πT . In
both the original formulation and its adaptation to sequences
by Hejna et al. [10], these state sequences are assumed to
be of the same length and spanning the same time frame,
simplifying direct comparison between the teacher and the
student’s actions. A similar assumption has seen success in
unsupervised robot learning from human demonstrations, as
in AVID [14], i.e. that the human moves with the same
action constraints as the robot. However, agent constraints
(from different morphologies, hardware capabilities) may
prevent the student from directly mimicking the teacher. In
the case of different agent velocities, the AIRL discriminator
could quickly distinguish student and teacher trajectories
by measuring distances between states, and thus would not
provide a good learning signal.

To resolve this, we propose to learn a sequence to sequence
alignment module which transforms teacher states sT1 . . . s

T
tT

to student states sS1 . . . s
S
tS . This is a domain translation task,

and can be inspired by works in e.g. image translation. A
critical design choice to make is whether this alignment
is paired or not. Provided arbitrary teacher demonstrations
and student attempts and thus no correspondence between
the two domains, we can use unpaired alignment as in
CycleGAN [15]. On the other hand, our problem setting
allows us to simulate teacher demonstrations for any given
student episode. This is reminiscent of the one-shot imitation
learning setting [16], where we have a student trajectory
which can be used to “cue” a reference demonstration for
every episode.

III. EXPERIMENTAL SETUP

In this section, we recap the Point Goal Navigation [17]
task, and provide details on our agents in simulation.

A. Task: PointGoal Navigation

We study this problem for the task of photorealistic Point
Goal Navigation (PointNav). In PointNav, the robot is initial-
ized in a previously unseen environment at a random starting
location and must navigate to a goal location specified in
relative coordinates. An episode is considered successful if
the robot navigates within 0.2m (the radius of the LoCoBot)
of the goal location. The robot is given as input a depth image
and an egomotion sensor which localizes the robot relative
to its spawn location. The robot is not provided a map of
the environment. The sensory suites will be held constant
across robots. Our teacher policy is an idealized cylindrical
robot which takes discrete actions consisting of turn-left
10°, turn-right 10°, forward 0.25m. We use the

Fig. 1: We consider the task of PointGoal Navigation, in which
an agent must navigate from a random starting location (blue) to
a target location (red). The agent is placed in a previously unseen
environment, and does not have access to a map.

pre-trained policy provided by [1], which has been trained
for 2.5 billion simulator frames in the Habitat simulator [18].
We consider two student robots: (1) a robot which has a
continuous action space; and (2) a robot which takes discrete
actions consisting of turn-left 5°, turn-right 5°,
forward 0.15m.

B. Evaluation Metrics

To evaluate the navigation performance of our agents, we
use success rate and Success weighted by Path Length (SPL)
[17]. SPL is similar to success rate, except that it is lower if
the agent travels a longer distance than the geodesic distance
from the start to the goal point. It is defined as follows:

SPL = S
L

max (P,L)
(1)

where S is 0 or 1 depending on whether the agent success-
fully completed the episode, P is the length of the agent’s
path, and L is the length of the shortest path from the start
point to the goal point.

However, in some applications it may be preferable to
follow not the shortest path to the goal. Instead it may be
preferable to follow the fastest path, which may not always
the same (Figure 2). Due to the nature of the discrete action
space used by Wjimans et al., their agent is only able to move
in a point-turn manner. In contrast, the continuous action
space of the student agent allows it to make smoother turns
when navigating. In other words, it can move forward and
turn simultaneously, allowing it to round corners faster than
at the cost of traveling a slightly longer distance.

Thus, we also consider Success weighted by Completion
Time (SCT) [19] as a metric, which is lower if the agent
takes longer to complete the episode (irrespective of path
length) compared to the fastest possible completion time.
To approximate the fastest completion time, we multiply the



Fig. 2: The shortest path is not always the fastest. Left: In addition to
pivoting and moving straight like a point-turn model, a unicycle-cart
dynamics model can move forward and turn (curve) simultaneously.
Right: A path faster than the shortest path may exist for both types
of dynamics. The fastest path depends on the agent’s maximum
linear and angular velocities, and initial heading.

length of the shortest path by the agent’s maximum linear
velocity. As this time does not consider the amount of time
necessary to make a turn (angular velocity), it is an upper
bound. SCT is defined by

SCT = S
T

max (C, T )
(2)

where C is the agent’s completion time, and T is the fastest
completion time to reach the goal point from the start
point while circumventing obstacles based on the agent’s
dynamics.

C. Action Space

We consider both discrete and continuous action
spaces for our robots. The discrete action space con-
sists of turn-left 10°, turn-right 10°, forward
0.15m or 0.25m, and STOP actions, as used by Savva
et al. [18] and Wijmans et al. [1]. The continuous action
space for LoCoBot contains center of mass (CoM) linear
(foward) and angular (yaw) velocities (vx, ωt). We limit
the linear velocity to be between 0 and 0.25 m/s, and the
angular velocity to be between -10°/s and 10°/s. Note that
since LoCoBot is non-holonomic, it does not have access to
strafe-left, strafe-right, or left and right velocity
(vy) actions. We constrain the linear velocity to be non-
negative (forward only), as we have found that allowing
the full velocity range (forward and backward) results in
the robot excessively moving backwards. This hurts the
performance of the robot, as it is moving without using the
visual input from its forward-facing camera which leads to
extensive collisions with the environment.

D. Policy Architecture

We use the same architecture described in [1] for our
student agents. The architecture has a visual encoder and a
policy. The visual encoder is a convolutional neural network
based on ResNet-50 [20], and takes the depth image as input.
The policy is a 2-layer LSTM recurrent neural network with
a 512-dimensional hidden state, taking the visual encoder’s
features, the relative distance and heading to the goal, the
previous action, and the previous hidden state as input
(Figure 3). The goal distance and heading are represented

Fig. 3: Network architecture for our student agents, comprised of a
convolutional encoder and a recurrent policy. The agent receives an
egocentric depth image, its current distance and heading relative to
the goal point, and its previous action at each time step. It outputs
an action and an estimate of the value function.

as [r, cos(θ), sin(θ)] to avoid the discontinuity at 180°,
and the previous action is represented as a pair of values
that represent linear and angular velocity. The final layer of
the policy 4 outputs, which parameterizes a Gaussian action
distribution (two means and two variances) from which to
sample a linear and angular velocity from. The policy also
has a critic head that outputs an estimate of the state’s value,
which we use for fine-tuning via reinforcement learning. The
full network architecture is shown in Figure 3.

E. Simulators and Datasets

Fig. 4: Example renders of RGB and Depth vision within the
photorealistic Habitat simulator. In addition to rich visual details,
Habitat also allows us to provide the agent with a variety of sensors,
including a GPS+Compass sensor which localizes the robot relative
to its spawn location.

We train our agents in the Habitat [18] simulator, a high-
performance photorealistic 3D simulator, using the Gibson-
4+ dataset [18], which consists of 86 high quality 3D scans
that have been rated 4 or above in quality (using the 0
to 5 quality scale) from the full Gibson dataset [2]. This
ensures that the 3D scans used are free from significant re-
construction artifacts such as holes or cracks in floor surfaces.
Examples of RGB and Depth images from the simulator are



Fig. 5: Our framework for teaching the student agent via behavioral
cloning. Both the expert and the student receive the same set of
observations (egocentric depth images and egomotion sensor). The
student uses the actions of the expert agent as labels, updating its
weights via supervised learning. With probability ps, the environ-
ment is stepped using the actions that are outputted by the student
agent, otherwise the expert’s actions are used.

shown in Figure 4. The dataset includes scans of real-world
environments (apartments, offices, houses, etc.), containing
furniture (chairs, desks, sofas, tables, etc.). The training
split contains over 3M episodes across 72 scenes, and the
validation split contains 994 episodes across 14 scenes.

IV. METHODS

We study how to leverage different experts from two
angles. First, we assume a method of mapping expert to
student behavior, and study how expert demonstrations can
be leveraged for the Embodied AI setting. Second, we study
how to learn such a mapping in a data-driven manner, if
it cannot be heuristically or analytically constructed. In the
following, we describe the experimental context for our
agent training, and then discuss our approach to trajectory
alignment.

A. Discrete to Continuous action space

Pre-trained Teacher Agent. For our first set of experiments,
our aim is to teach a student agent that utilizes a continuous
action space by leveraging a pre-trained expert agent [1]
that utilizes a discrete action space as a teacher. The pre-
trained expert agent is trained for 2.5 billion simulator frames
using 64 GPUs, and reaches near-perfect performance; the
agent learns to successfully travel to the goal over 96% of
the time in previously unexplored scenes. Furthermore, the
expert agent achieves an average SPL score of 0.92 (out of
1.0), which exemplifies how closely it follows the shortest

path from the start to the goal (i.e., no detours, wrong turns,
etc.).

We adopt a DAgger-like approach [9], in which the student
agent learns from both the trajectories of the teacher, as well
as the trajectories that it generates itself by interacting with
the environment. At every step, the teacher and student both
receive the same set of observations, and both output an
action to execute. The teacher’s actions are used as labels
for the student’s actions. The teacher’s actions are mapped
to student labels using the following mapping:

For this supervised learning approach, we use Mean
Squared Error (MSE) as the loss function for updating
weights. To move the robot and step the environment, either
the action of the expert or the student is selected. At
each time step, the action of the student is selected with
probability ps. We set ps to begin with a value of 0 at the start
of training, and linearly increase it to a value of 1 as training
progresses. This translates to letting the teacher assume total
control of driving the robot at the beginning of training, with
the student slowly gaining control as training progresses.

For this behavioral cloning phase, we use 1 GPU (Nvidia
RTX 2080Ti), with 72 parallel environments being stepped
concurrently, for about one hour (2 million steps). This is a
very modest compute budget compared to the budget used
to train the expert agent (64 GPUs, 3 days, 2.5 billion
steps). Gradients are accumulated over every batch size
steps before updating the weights with backpropagation. We
choose a batch size of 4.

In our experiments, we also test training the student with
an MSE critic loss, in which the value estimate outputted by
the expert agent is used to label value estimates of the state
that the student outputs. We did this to see if supervising the
critic head of the student boost performance for the later RL
fine-tuning step, but found that using the critic loss does not
help performance significantly. This implies that it may be
possible to teach the student agent using an expert that only
outputs actions and not value estimates, such as a classical
shortest-path follower.
Oracle Teacher Agent. Following the results of the previous
experiment, we investigate using a non-learning approach in
lieu of a learned expert agent. Specifically, we use an oracle
shortest-path follower to provide actions along the shortest
path to the goal, which serve as labels for the student agent.
The shortest path follower is a classical approach that uses
A* on the map of the environment to compute the shortest
path to the goal. Using a shortest path follower obviates the
need for a pre-trained expert agent, which may not always be
readily available. In addition, since the shortest path follower
is a non-learning approach, the scaling of actions can be
easily modified to accommodate any limits on linear and
angular velocity the student may have, and can be applied



to both discrete and continuous action spaces. This increases
the generality of the approach, and allows us to train student
agents without the added overhead of pre-training expert
agents.
Super-expert performance via RL fine-tuning. We expect
that fine-tuning with RL will allow the student agent to learn
more diverse motions that allow it to deviate from the simple
point-turn dynamics of the discrete action expert and the
shortest path follower which also has a point turn dynamics
model (Figure 2). This will lead to student agents that can
fully exploit their continuous action spaces to learn to reach
goals much faster than the original expert agent.

B. Learning an Alignment Module

Aligned AIRL

[Real, Fake]DiscS

Student

Teacher
s1... sT'

s1... sT

GenS s'1... s'T

Fig. 6: We propose that the AIRL discriminator can also be used for
adversarially training an alignment module which translates teacher
to student trajectories.

We reason that an alignment module can take a demon-
stration’s state transitions and output a new trajectory that
preserves coarse semantics (e.g. moving in the same di-
rections) but adapts the student’s low-level transition dy-
namics (e.g. velocity). We hope to learn this translation
jointly with AIRL, as displayed in Fig. 6, such that the
alignment module and agent both learn to produce expert
trajectories with student dynamics. A separate loss should
be used to ground alignment module output to its input.
How should we design the architecture to accommodate both
potential roles? To start with, the AIRL discriminator would
typically contrast with full agent states (including egocentric
observations), but the alignment module would then have
the challenging task of generating photorealistic egocentric
observations. One sensible choice, as used in [10], is to
simply consider the most task-relevant state, GPS-location
and heading. However, while this may be easier for the
alignment module, a tuple of two successive locations is
not sufficient to distinguish expert from novice behavior
in navigation in novel rooms. We hypothesize that AIRL
may better identify expert behavior by receiving longer state
trajectories. In the extreme, for example, we may translate
full expert trajectories (from spawn to goal), and AIRL would
judge a student based on their likeness to these full trajec-
tories. This choice is a tradeoff. Longer trajectories provide
more context, from which it may be semantically easier to
identify expert behavior. However, longer trajectories also
make credit assignment harder for the agent, and would task
the alignment generator with a difficult sequence to sequence
problem. It is worth noting that earlier works such as [10],
[14] also perform IRL on sequences but reduce task horizons

by operating on subtasks provided by human or hierarchical
agent design.

A second design choice to consider is whether alignment
output semantics should reflect the teacher or the student. For
example, if an immature student explores entirely different
rooms than the teacher, it may reduce covariate shift to ask
alignment output to reflect student behavior. In the standard
domain translation setting, there is no student to match and
so alignment output should strongly reflect the teacher’s
behavior. However, in the simulated robot-to-robot transfer
setting, teacher demos are provided for every student episode
(and even synthesized on the fly, as studied in the previous
onboard expert setting). This exact pairing could potentially
provide more precise grounding.

Teacher

Student

F G

CycleGAN AttenderGAN

Key/Value

Q1 Q2

F F

Fig. 7: Two approaches to trajectory alignment. The CycleGAN-
based model does sequence encoding-decoding of the full trajecto-
ries. AttenderGAN is a novel architecture, which extracts relevant
parts of a relevant trajectory.

Considering these two choices, we propose two models for
our alignment module, with schematics provided in Fig. 7.
The first model is based on CycleGAN [15]; it translates
entire teacher trajectories into entire student trajectories,
using an RNN encoder-decoder architecture (rather than the
CNN-based encoder-decoder used for vision). Alignment
output is grounded to the input teacher trajectory through
a mean-squared error reconstruction loss. The second model
is a novel architecture which we name AttenderGAN, most
closely related to attentive architecture in [16]. It enables
translation to shorter segments of an episode (CycleGAN
cannot produce such segments and fully reconstruct its
input). Duan et al. [16] uses a single state to attend to the
reference demonstration (in this case the teacher trajectory)
and extract the relevant behavior; AttenderGAN encodes
the cue to attend to the reference and produce a plausible
output. Specifically, a context vector is formed from the
cue’s attention to the reference trajectory; this context vector
initializes an RNN generator. To ground the output, we use a
contrastive loss inspired by Contrastive Unpaired Translation
(CUT) [21]. Grounding towards the student trajectory is
achieved by pairing cues with the output it extracts, and
negative pairs are formed by other cues to the same reference.
Grounding towards the teacher trajectory can use the same
approach, but using a cue’s attended steps of the teacher
demonstration instead of the cue itself. Note that CycleGAN
reconstruction loss requires bidirectional translation (two
distinct models generate outputs in each of student and
teacher domains), while AttenderGAN is one-directional. We
omit further architecture details as we do not achieve a



Fig. 8: Average SPL on the validation set. Legend indicates when ps
reaches a value of 1. We find that allowing the student driver to take
full control of the robot from the beginning of training to the end
yields the best results. Other student agents that allow the teacher to
provide trajectories to learn from towards the beginning of training
do not converge as quickly in terms of navigation performance.

positive result.
Alignment experimental setup. Before attempting to jointly
learn an alignment module in an AIRL setting, we want
to validate the difficulty of only domain translation. To
test this, we prepare a dataset of 50000 paired (same
spawn/goal/scene) trajectories. We compare GPS and head-
ing in states, but pre-encode the heading angle with a
sinusoidal embedding. The trajectories are recorded from
two agents that were trained entirely with RL. One uses a
0.15 step and the other uses a 0.25m step. The full episodes
are on the order of 100 steps; we also evaluate on an
abbreviated “short” horizon, which takes the final 15 steps
of the 0.15m agent and final 9 steps of 0.25m. Since this
is a novel domain translation task, there are no established
means of evaluating translation quality. However, we did not
find the results qualitatively good enough to warrant defining
heuristic evaluation methods.

V. RESULTS

In this section, we aim to address the following questions:
1) Does the behavioral cloning phase significantly accel-

erate training via reinforcement learning?
2) Can we use a non-learning based agent as an expert to

learn from?
3) Can we learn an alignment module to overcome the

correspondence problem?

A. Behavioral Cloning Results

Interactivity Study. We test how the amount of interactivity
the student is allowed with the environment affects its
final performance on the held out validation set of unseen

environments. To test various levels of interactivity, we train
several variants of the agents that use different schedules for
linearly increasing the probability ps, where ps starts at 0
and grows to 1 by a certain time step of training.
Accelerating Learning: Pre-trained Teacher. Our results
show that with a very modest compute budget, our student
agent approaches the asymptotic performance of the expert
agent much faster than an agent trained from scratch only
using RL with a much more extravagant budget. For the case
in which the teacher agent is the learned discrete expert, we
found that as the amount of interactivity the student had with
environment grew, performance improved (see Figure 8). In
fact, full interactivity, with the teacher only being used as a
labeler rather than to generate trajectories, yielded the best
results in terms of SPL on the validation set.
Accelerating Learning: Oracle Teacher. We also exper-
imented with the amount of interactivity the student had
with the environment when trained with an oracle teacher.
Upon evaluating variants of the student agents with varying
interactivity on the validation set, we found that variant with
less interactivity with the environment outperformed agents
with high interactivity with the environment (0.259 SPL vs.
0.166 SPL), as shown in Table I. This is the opposite of the
conclusion from the previous experiment of learning from
the pre-trained teacher agent. We attribute this to the fact
that the oracle teacher will almost always attempt to pivot
the robot towards the next waypoint along the shortest path to
the goal when the students agent’s action causes it to stray
from the shortest path. On the other hand, the pre-trained
teacher has learned that exploration is beneficial, and will
allow the student agent to deviate from the shortest path
occasionally go down non-optimal paths to scope out rooms
and visually verify plausible routes to the goal. Thus, when
learning from the oracle teacher, it is best for the teacher to
interact with the environment and avoid letting the student
derail the robot from the shortest path, letting the student
passively learn from the actions that the teacher dictates.

TABLE I: Performance comparison of agents trained with behav-
ioral cloning using an oracle teacher agent with varying amounts
of environment interactivity. Mean and 95% confidence interval on
the validation scenes are reported.

Interactivity Success ↑ SPL ↑ SCT ↑

1.0 @t=0 0.175±0.024 0.166±0.023 0.030±0.004

1.0 @t=500k 0.120±0.020 0.118±0.020 0.021±0.004

1.0 @t=1M 0.115±0.020 0.112±0.019 0.027±0.005

1.0 @t=1.5M 0.095±0.018 0.089±0.017 0.018±0.004

1.0 @t=2M 0.269±0.028 0.259±0.027 0.055±0.006

0.0 0.223±0.026 0.153±0.019 0.037±0.005

Super-expert performance via RL fine-tuning. We fine-
tune both the expert-trained student agent and the oracle-
trained student agent with reinforcement learning using PPO
for 10M simulator steps. The performance of the oracle-
trained student agent drastically improves with fine-tuning,
and we see that in Figure 9, both student agents are able



Fig. 9: Average SPL on the training and validation set after fine-
tuning. The student agents achieve a higher SPL than an agent
trained using reinforcement learning from scratch. However, the
student agents seem to overfit slightly to the training environment,
as evidenced by the larger gap in performance between the train
and validation set.

to achieve a much higher SPL much faster than the agent
that was trained from scratch using reinforcement learning.
However, we notice that the performance of the student
agents drop slightly when evaluated on the validation set,
whereas the performance of the pure reinforcement learning
agent seems to stay constant. This implies that the despite
only being trained for 2M steps during the behavioral cloning
phase, the agents seem to be over-fitting to the training data
much more than the pure RL agent despite being trained for
10M more steps in the RL fine-tuning phase.

Fig. 10: Average SCT on the validation set after fine-tuning. The
student agents are able to achieve a higher SCT than the expert
agent it learned from, indicating that the students learn to leverage
their continuous action space, although it learned from an expert
agent with a discrete action space.

Additionally, we measure SCT to compare the completion
times between the students and the expert discrete teacher

agent. From Figure 10, we notice that the student agents are
able to achieve a much higher SCT than the expert agent it
learned from. This demonstrates that the student agent is able
to learn to leverage its continuous action space to reach goals
via a faster path over the discrete teacher agent it originally
learned from.

B. Adversarial Alignment Results

In this section, we provide translation samples from our
most stable alignment models, summarize experimental find-
ings, and discuss means for improvement. Intuitively, we
expect the module to be learn to interpolate its inputs. As
we discuss, this is not achieved and training was unstable,
and so our adversarial alignment was not tested in the joint
setting.

Fig. 11: CycleGAN outputs. We plot a teacher trajectory (its top-
down GPS locations), its student translation, and the reconstructions
of the teacher trajectories. Translation is has denser spacing and is
not erratic, but trajectories are arbitrarily rotated. Training collapses
on long horizons.

CycleGAN variants. The basic CycleGAN implementation
successfully produces denser outputs when translating from
a 0.25m teacher to a 0.15m student as shown in Fig. 11.
However, the output is additionally rotated relative to the
input. The degree of rotation varies across multiple runs
and episodes (not shown). Nonetheless, besides this quirk,
adversarial training is stable and suggests scaling to longer
trajectories. However, when translating 100+ step episodes,
training collapses when the discriminator overwhelms the
generator. We experimented with allowing the generator to
operate with state displacements instead of the state itself,
as well as allowing the generator to begin outputing values
before reading the whole input sequence; neither produced
successful results. It is possible that the short-horizon model
would suffice for AIRL, but if not, CycleGAN appears to
fail to scale.
AttenderGAN variants. We repeat the short and long-
horizon experiments, presenting results in Fig. 12. In the
short horizon, outputs are extracted from consistent locations



Fig. 12: AttenderGAN outputs. We plot a reference teacher
trajectory (red) along with the paired student trajectory (green).
The second plot shows three different student cues with their
corresponding AttenderGAN outputs, distinguished with different
markers. AttenderGAN outputs are shuffled relative to the input
cues. Outputs are entirely ungrounded on long horizons.

in the expert trajectory. Notably, however, there is no appar-
ent pattern between a cue’s location and the trajectory it
extracts. This lack of intuitive grounding results in uninter-
pretable extractions in the long-horizon setting. One remedy
for this mismatch is to provide the discriminator a part of the
cue, e.g. the first state of the cue. However, this makes the
generation problem harder and results again in disriminator
collapse (not shown).

We unsuccessfully try several variants of the architecture,
including:

• Using a CNN or RNN as the cue encoder.
• Adding contrastive objectives to ground the output to

the cue.
• Providing the generator a sequence of contextualized

inputs instead of an initial condition.
It is possible that multi-scale contrastive losses (as in [21]) or
batch-wise contrastive losses could provide better grounding
without destabilizing the adversarial training.

VI. CONCLUSION

In this work, we demonstrate that policy distillation via our
DAgger-like behavioral cloning approach enables us to train
navigation agents that reach higher performance levels much
faster than navigation agents trained with pure reinforcement
learning. We find that this holds true even in the absence
of a learned expert agent, showing that using an oracle
shortest path follower as the teacher agent yields similar
levels of performance after RL fine-tuning. We find that in
the case of using a learned expert agent as the teacher, more
interactivity improves the performance of the student agent,
whereas limiting interactivity improves the performance of
the student agent when using the oracle as the teacher.

On the other hand, adversarial alignment was more chal-
lenging than expected. Alignment fails to scale to full length

trajectories, which would be necessary to provide meaningful
adversarial rewards. It is possible the existing approach could
be made to work as the task does not appear challenging for
humans and indeed an non-learning baseline (e.g. dynamic
time warping) could produce reasonable results. Alternately,
there may be aspects of the alignment (e.g. which semantics
are important and which should be translated) that are poorly
formalized and warrant more attention.

REFERENCES

[1] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, et al., “DD-PPO:
Learning near-perfect pointgoal navigators from 2.5 billion frames,”
in ICLR, 2020.

[2] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
env: Real-world perception for embodied agents,” in CVPR, 2018.

[3] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans,
et al., “Sim2real predictivity: Does evaluation in simulation predict
real-world performance?” IEEE Robotics and Automation Letters,
vol. 5, no. 4, p. 6670–6677, Oct 2020. [Online]. Available:
http://dx.doi.org/10.1109/LRA.2020.3013848

[4] J. Truong, S. Chernova, and D. Batra, “Bi-directional domain adap-
tation for sim2real transfer of embodied navigation agents,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 2634–2641, 2021.

[5] “Locobot: An open source low cost robot,” https://locobot-website.
netlify.com/, 2019.

[6] “Willow garage,” https://www.turtlebot.com/.
[7] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch

and freight: Standard platforms for service robot applications,” in
Workshop on autonomous mobile service robots, 2016.

[8] Y. Tang and S. Agrawal, “Discretizing continuous action space for
on-policy optimization,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5981–5988.

[9] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[10] D. Hejna, L. Pinto, and P. Abbeel, “Hierarchically decoupled imitation
for morphological transfer,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine Learn-
ing Research, vol. 119. PMLR, 13–18 Jul 2020, pp. 4159–4171.

[11] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by
cheating,” CoRR, vol. abs/1912.12294, 2019. [Online]. Available:
http://arxiv.org/abs/1912.12294

[12] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, et al.,
“Solving rubik’s cube with a robot hand,” CoRR, vol. abs/1910.07113,
2019. [Online]. Available: http://arxiv.org/abs/1910.07113

[13] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” 2018.

[14] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “Avid:
Learning multi-stage tasks via pixel-level translation of human videos,”
2020.

[15] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” 2020.

[16] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, et al.,
“One-shot imitation learning,” 2017.

[17] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
et al., “On Evaluation of Embodied Navigation Agents,” arXiv preprint
arXiv:1807.06757, 2018.

[18] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, et al.,
“Habitat: A Platform for Embodied AI Research,” in ICCV, 2019.

[19] N. Yokoyama, S. Ha, and D. Batra, “Success weighted by completion
time: A dynamics-aware evaluation criteria for embodied navigation,”
arXiv preprint arXiv:2103.08022, 2021.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[21] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning
for unpaired image-to-image translation,” 2020.


